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Shattering transitions in collision-induced fragmentation
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We investigate the kinetics of nonlinear collision-induced fragmentation. We obtain the fragment mass
distribution analytically by utilizing its traveling wave behavior. The system undergoes a shattering transition
in which a finite fraction of the mass is lost to infinitesimal fragments~dust!. The nature of the shattering
transition depends on the fragmentation process. When the larger of the two colliding fragments splits, the
transition is discontinuous and the entire mass is transformed into dust at the transition point. When the smaller
fragment splits, the transition is continuous with the dust gaining mass steadily on the account of the frag-
ments. At the transition point, the fragment mass distribution diverges algebraically for small masses,c(m)
;m2a, with a51.201 91 . . . .
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I. INTRODUCTION

Fragmentation occurs in numerous physical phenom
and industrial processes@1–5#. Examples include breakup o
liquid droplets@6# and atomic nuclei@7#, polymer degrada-
tion @8#, shattering of solid objects@9,10#, meteor impacts,
and mineral grinding. Idealized models of such physical p
nomena are also useful conceptual tools for describing c
plex systems such as fluid turbulence, spin glasses@11#, ge-
netic populations@12,13#, and random Boolean network
@14,15#.

In some cases, for example in polymer degradation,
evolution of a fragment depends only on its size. Therefo
fragments do not interact and such processes are inher
linear. In other cases including grinding processes, exp
sions in an enclosed volume, and breakup of eddies
turbulent flow @16#, interactions between fragments are e
sential. Such fragmentation processes are intrinsicallynon-
linear @17–20#. In this study, we show that the nature of th
mass distribution changes qualitatively due to nonlinearit

We investigate a basic class of nonlinear fragmenta
processes where binary collisions are the cause of break
We show that such processes exhibit a shattering trans
where infinitesimal fragments~dust! carry a finite fraction of
the mass in the system. We consider the simplest realiza
where one of the two colliding fragments breaks into tw
pieces. Generically, the number of fragments diverges i
finite time, indicating shattering into dust.

The nature of the shattering transition depends sensiti
upon the details of the fragmentation process, in particu
which of the two colliding particles splits. We investiga
three possibilities:~a! either, ~b! the larger, and~c! the
smaller of the two particles breaks into two fragments up
collision. In the first two models, as the transition occurs
entire mass is instantly transformed into dust. In the th
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model, the dust mass gradually increases once the shatt
transition occurred.

In contrast with linear fragmentation processes, expl
solutions of the nonlinear and nonlocal rate equations
generally not possible. Nevertheless, the most impor
physical characteristics can still be obtained analytically.
terestingly, the fragment mass distribution attains a trave
wave form as the transition is approached. Of the spect
of possible propagation velocities, the extremal one is
lected and it characterizes typical and extremal behavior
the mass distribution. In the case of modelC, at the shatter-
ing transition, the mass distribution is algebraic for sm
masses, with a transcendental exponent. Past the trans
the fragment mass distribution approaches a universal fo

We first consider the number density that manifests
shattering transition~Sec. II!. Then, we analyze the fragmen
mass distribution using rate equations for a deterministic v
sion ~Sec. III! and a stochastic version~Sec. IV! of the frag-
mentation process. Finally, we summarize our results
outline a few suggestions for future work~Sec. V!.

II. THE NUMBER DENSITY

Consider a fragmentation process where at each~binary!
collision event, one particle splits into two pieces while t
second particle remains intact. We restrict our attention
situations where the splitting rate is independent of the fr
ment size and without loss of generality, the collision rate
set to unity. Analogous to the kinetic theory description
collisions in molecular gases, we assume perfect mixi
namely, absence of spatial correlations between fragme
The total fragment densityN(t) evolves according to the rat
equation

d

dt
N~ t !5N2~ t !. ~1!

Without loss of generality, the initial density is set to unit
N(0)51, and therefore, the total density is
©2003 The American Physical Society02-1
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N~ t !5
1

12t
. ~2!

In a finite time, the number of fragments diverges and
average fragment mass vanishes. This divergence indic
that the system undergoes a shattering transition attc51.

Let t5*0
t dt8 N(t8) be the average number of collision

experienced by a fragment up to timet. This quantity di-
verges logarithmically,

t5 ln N~ t !5 ln
1

12t
. ~3!

This ‘‘collision counter’’ provides a convenient alternativ
measure of time.

III. DETERMINISTIC FRAGMENTATION

To complete the model definition we have to spec
which of the fragments splits, and how it splits. Followin
Cheng and Redner@18#, we consider three possibilities:~a! a
randomly chosen,~b! the larger, and~c! the smaller fragmen
splits upon collision. In this section, we consider a determ
istic rule where fragments split into two equal pieces. In
following section, we show that stochastic rules result
qualitatively similar behaviors.

A. Random particle splits

We start with the case where a randomly selected par
splits upon collision~this is equivalent to having both pa
ticles split!. For simplicity, we focus on monodisperse initi
conditions where all particles have unit mass,m51. Then, a
fragment produced byn collision events has massm522n.
Let cn(t) be the density of such fragments at timet. This
density evolves according to

d

dt
cn~ t !5N~ t !@2cn21~ t !2cn~ t !#, ~4!

with the total densityN(t)5( j 50
` cj (t). Summing up Eqs.

~4! we indeed recover Eq.~1!. Also, the total massM (t)
5( j 50

` 22 j cj (t) is conserved,M (t)51.
In terms of the collision counter, the process is line

(d/dt) cn52cn212cn , and subject to the monodisperse in
tial conditionscn(0)5dn,0 , the exact solution is the Poisso
nian density@18#

cn~t!5e2t
~2t!n

n!
. ~5!

At the shattering timetc51 ~corresponding tot5`), the
densities vanish:cn(t51)50 for all n. Therefore, the frag-
ment mass density undergoes a first-order~discontinuous!
transition,M (t)5Q(tc2t) with Q the Heaviside step func
tion. In other words, the entire mass is shattered into dust
there are no particles with positive mass@8,18,21#.

Near the shattering transition, i.e., ast→`, the mass dis-
tribution approaches
02110
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cn~t!→ N

Avt
GS n2vt

Avt
D , ~6!

wherev52 andG(x)5(2p)21/2exp(2x2/2) is the Gaussian
distribution. Sincen5 log2(1/m), the mass distribution be
comes log normal, a behavior typical to fragmentation a
cascade processes@2,8,18,21#.

B. Larger particle splits

Now in a collision, the larger particle splits into two equ
pieces. If the colliding particles have the same mass, a
domly chosen particle splits. The fragment mass densitycn
[cn(t) satisfies the rate equation

d

dt
cn54cn21An22cnAn1112cn21

2 2cn
2 , ~7!

whereAn is the cumulative density of fragments of mass 22n

and smaller,An(t)5( j 5n
` cj (t). The initial conditions are

cn(0)5dn,0 . One can verify that the mass is conserve
M (t)51, and that the total density is given by Eq.~2!.

The densityc0(t) of unit mass particles satisfies the Be
noulli equation (d/dt) c05c0

222c0N. Using Eq.~2! and the
initial condition c0(0)51 gives

c0~ t !5
3~12t !2

21~12t !3
. ~8!

For sufficiently small n, one can obtain the leadin
asymptotic behavior near the shattering transition. SinceAn
→N ast→1 and the last two terms on the right-hand side
Eq. ~7! are asymptotically negligible, the rate equations si
plify to (d/dt) cn52N(2cn212cn) which are identical~up
to the factor 2! to Eqs.~4!. Therefore,

cn~t!}e22t
~4t!n

n!
. ~9!

Apart from logarithmic corrections, the densities vanish qu
dratically: cn(t)}(12t)2. We conclude that the shatterin
transition remains discontinuous~see Fig. 1!. Figure 1 sug-
gests studying the normalized distributionN21cn(t). Below,
we show that as a function oft, the normalized fragmen
mass distribution follows a universal behavior in the largen
limit.

The rate equations~7! simplify in terms of the cumulative
densities:

d

dt
An52An21

2 2An
2 . ~10!

This equation holds forA05N if we setA21[A0. The ini-
tial conditions areAn(0)5dn,0 . We characterize time by the
collision counter~3! and normalize the size density by th
total number density,Fn(t)5N21An(t). These transforma-
tions yield
2-2
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d

dt
Fn52Fn21

2 2Fn
22Fn . ~11!

Asymptotically, this equation admits a traveling wave so
tion Fn(t)→ f (n2vt) as shown in Fig. 2. The wave form
f (x) satisfies the difference-differential equation

v
d

dx
f ~x!5 f ~x!1 f 2~x!22 f 2~x21!, ~12!

and is subject to the boundary conditionsf (2`)51 and
f (`)50. Remarkably, the velocityv can be determined
without solving the nonlinear and nonlocal differential equ

FIG. 1. The normalized fragment size distribution. Shown
N21cn(t) versust for n50, 1, 2, 4, and 6. The numerical resul
reported in this study were obtained from integration of the r
equations using the Adams-Bashford method with an adaptive
step yielding a relative accuracy of 1029 in the densities.

FIG. 2. The travelling wave. Shown are numerical solutions
Eq. ~11! for n52, 4, 6, and 8.
02110
-
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tion ~12! exactly. It follows from the exponential behavio
attained byf (x) far behind the front: 12 f (x);elx as x→
2`. Together with Eq.~12! it yields a ‘‘dispersion’’ relation
between the velocityv and the decay coefficientl,

v5
324e2l

l
. ~13!

Out of the spectra of possible velocitiesvP(2`,vmax#, the
maximal value is selected. At the maximum, we have 3el

54(11l), from whichl>0.961 279 andv>1.529 61. Al-
ternatively, the velocity is the smaller root ofv ln(4e/v)53.

Velocity selection underlies numerous situations, yet
has been rigorously established only for a few nonlin
parabolic partial differential equations, typically occurring
reaction-diffusion problems@22–27#. Recently, velocity se-
lection has been also applied to a host of difference
difference-differential equations@28–32# including a linear
fragmentation process@30#. Typically, the selected velocity
gives key physical characteristics such as the growth velo
of a surface in deposition processes@28# or the extremal
heights of random trees@32#.

The typical behavior of the fragment mass density follo
from the traveling wave form

cn~t!→N g~n2vt!, ~14!

with g(x)5 f (x)2 f (x11). The front locationn* 'vt char-
acterizes typical fragments and the typical massm* 522n

*
shrinks as

m* ;~12t !s ~15!

with s5v ln 2>1.060 24 ast→1. The decay of the typica
mass is slower than that in modelA where s52 ln 2
>1.386 29. Another difference between modelsA and B is
manifested by the width: In contrast with the diffusive broa
ening in modelA, the width saturates at a finite value
modelB. Yet, fundamentally the shattering transitions are
same in both models—the entire system is instantly tra
formed into dust at the transition point.

The extremal behavior of the fragment mass density
lows from the tails off (x). The behavior far ahead of th
wave front (x→`) is a sharp double-exponential decay,
implied by the leading terms in Eq.~12!, v(d/dx) f (x)5
22 f 2(x21). In summary, the extremal behaviors are

f ~x!;H 12C1 elx, x→2`

2x exp~2C2 2x!, x→1`.
~16!

We now reexpress the mass distribution in terms of
ordinary mass variablem522n. The two distributions are
related viac(m)dm5cndn ~note that large masses corr
spond to small indices and vice versa!. Near the shattering
transition, the mass distribution attains the scaling fo
c(m)→(N/m* )F(m/m* ). Equation ~16! leads to the fol-
lowing extremal behaviors of the scaling function:

F~z!;H z2a, z@1

z22exp~2C2 z21!, z!1,
~17!

e
e

f
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with a511l/ ln 2>2.386 83. Hence, large masses~relative
to the typical mass! are suppressed algebraically, while sm
masses are suppressed exponentially.

Generally, in fragmentation processes the mass distr
tion has a scaling form and this is indeed the case
collision-induced fragmentation. However, the nonlinear
ture of the process results in qualitative changes to the s
ing behavior. The similarity solutions have two scales ch
acterizing the front location and fluctuations around it in t
linear case~modelA). In contrast, only a single scale unde
lies similarity solutions in the nonlinear case~modelB).

C. Smaller particle splits

When the smaller particle splits upon collision, the fra
ment size densities satisfy the rate equations

d

dt
cn54cn21Bn2122cnBn12cn21

2 2cn
2 , ~18!

where Bn5( j 50
n21cj is the cumulative density of particle

with mass larger than 22n.
The density of unit mass particles is readily found

solving ċ052c0
2. The next density can be found as well,

c0~ t !5
1

11t
, ~19!

c1~ t !5
2

11t

~11t !321

2~11t !311
.

These explicit results already demonstrate that densities
positiveat all times. Hence, the total mass densityM (t) also
remains positive after the shattering transition.

The kinetics just below and at the shattering transition
be determined using the traveling wave behavior. The cu
lative distribution obeys (d/dt) Bn52Bn21

2 2Bn
2 which is

identical to Eq.~10!; the initial conditions, however, are dif
ferent: Bn(0)512dn,0 . The transformed distribution
Fn(t)5N21Bn again evolves according to Eq.~11!. Asymp-
totically, it admits a traveling wave solution,Fn(t)→ f (n
2vt), with the wave formf (x) satisfying Eq.~12!. How-
ever, the boundary conditions are reversed,F(2`)50 and
F(`)51, leading to different quantitative and qualitativ
results.

Both extremal behaviors are now exponential,

f ~x!;H ex/v, x→2`

12e2lx, x→1`.
~20!

The behavior far ahead of the front is used to determine
velocity. The dispersion relation is

v5
4el23

l
, ~21!

and the extremum selection principle givesl>0.580 13 and
v>7.145 09. Numerically, we confirmed this velocity
within 0.01%. Interestingly,v is the larger root of the sam
02110
l

u-
r
-

al-
r-

-

re

n
u-

e

~as in modelB) equationv ln(4e/v)53. We note that the
velocities satisfyvB,vA,vC .

The fragment size distribution follows the traveling wa
form ~14! with g(x)5 f (x11)2 f (x). The typical mass
shrinks according to Eq.~15! with s5v ln 2>4.9526 near
the shattering point. The exponential tails of the wave fo
imply algebraic tails for the scaling function underlying th
mass distribution

F~z!;H z2a, z@1

z2b, z!1,
~22!

with a511(v ln2)21>1.201 91 and b512l/ ln2
>0.163 049.

Our major result is that the mass distribution diverg
algebraically at the transition time@33#:

c~m,1!;m2a, ~23!

for m→0 with the transcendental exponenta51.201 91
~Fig. 3!. This behavior can be obtained from the large-z be-
havior of F(z). Although, in general, the traveling wav
form implies time-dependent densities, whenz→`, the
mass densities becomestationary.

Model C exhibits a rich post-transition behavior. The e
plicit solutions~19! suggest thatcn.gn t21 whent→`. In-
deed, this behavior is compatible with Eqs.~18! and the cu-
mulative amplitudes Gn5( j 50

n g j satisfy the recursion
relationGn

22Gn52Gn21
2 with G051. The amplitudes grow

exponentially,gn;Gn;2n/2. Summing over densities, th
total fragment mass decays as

M ~ t !.C t21 as t→`, ~24!

with C5(n50
` 22ngn>2.660 84. Thus, the total fragmen

mass remains positive at all times. The dust massm(t)51
2M (t) vanishes at the shattering time,m(1)50, and it

FIG. 3. The mass distribution at the shattering time. Numeri
integration of the rate equations~18! are compared with the theo
retical prediction~23!.
2-4
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gradually increases fort.1 ~Fig. 4!. Only in the long time
limit it accounts for the entire mass in the system. We c
clude that in modelC, the shattering transition is continuou

Numerically, we observe that for sufficiently largen, the
densities follow a universal behavior~Fig. 5!

cn~ t !→2n/2 u~ t !. ~25!

While this ansatz is asymptotic with respect ton, it holds for
all times. The functionu(t) vanishes below the shatterin
time and grows linearly afterwards,u(t);(t21) for t21
→0. Hence, this function plays the role of an order para
eter. Note also thatu(t);t21 as t→`.

FIG. 4. Fragment versus dust mass. Shown are the fragm
massM (t) ~solid line! and the dust massm(t) ~dashed line! versus
time t.

FIG. 5. The asymptotic behavior of the size density. Shown
22n/2cn(t) versust for n56, 10, 20, and 30. The inset shows th
behavior in the vicinity oft51 for n530 ~axis labels are as in the
main figure!.
02110
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The order parameter and the total dust mass are intima
related. Consider the total mass density of fragments of m
22k or larger:M (k)(t)5(n50

k 22n cn(t). From the rate equa
tions ~18!, this mass density decreases according to

d

dt
M (k)~ t !5222kck~2Bk1ck!. ~26!

The flux of mass from fragments into dust is simp
(d/dt) m52 lim

k→`
(d/dt) M (k). Using Eq.~25!, the right-

hand side of Eq.~26! approaches (312A2)u2(t) in the limit
k→` and therefore,

d

dt
m~ t !5~312A2!u2~ t !. ~27!

This in turn shows that the dust mass grows according
m(t);(t21)3 past the transition.

IV. STOCHASTIC FRAGMENTATION

We now briefly describe a generalized collision-induc
fragmentation process where splitting is stochastic. Spe
cally, a particle of massesm splits into two fragments of
massm8 andm2m8 with m8 chosen stochastically from th
interval 0,m8,m according to some fixed distribution. W
focus on the simplest case of uniform splitting, i.e.,m8 is
chosen uniformly in@0,m#.

A. Model A

When a randomly selected particle splits, the mass den
c(m,t) satisfies

]

]t
c~m,t!52c~m,t!12E

m

` dm8

m8
c~m8,t!. ~28!

The kernel 1/m8 reflects the uniform splitting probability an
the collision rateN is absorbed by the collision countert.
This equation is solved using the Mellin transform and
the monodisperse initial condition,c(m,0)5d(m21), one
finds @34#

c~m,t!5e2td~m21!1e2tA 2t

ln
1

m

I 1FA8t ln
1

mG
with I 1 the modified Bessel function. The first term on th
right-hand side simply describes the density of particles t
have yet to collide. The second term simplifies asympto
cally. Making the transformationm5e2n leads to a normal
distribution as in Eq.~6! with the propagation velocityv
5 32

9 .
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B. Model B

When the larger of the two fragments splits, the rate eq
tions for the mass densityc(m)[c(m,t) are

]

]t
c~m!54E

m

` dm8

m8
c~m8!A~m8!22c~m!A~m!, ~29!

with the cumulative densityA(m)5*0
mdm8c(m8). We em-

ploy the same transformations used in the deterministic c
Characterizing massm by ‘‘index’’ n via m5e2n, the frag-
ment size densityc(n) evolves according to

]

]t
c~n!54E

0

n

dn8en82nc~n8!A~n8!22c~n!A~n!

~30!

with A(n)5*n
`dn8c(n8). This cumulative distribution satis

fies

]

]t
A~n!5A2~n!22E

0

n

dn8 en82n
]

]n8
A2~n8!. ~31!

Expressing time in units of the collision counter and norm
izing by the total density,F(n,t)5N21A(n), we transform
Eq. ~31! into

]

]t
F~n!5F2~n!2F~n!22E

0

n

dn8 en82n
]

]n8
F2~n8!.

Seeking a traveling wave solutionF(n,t)→ f (n2vt) yields
the nonlinear integrodifferential equation

v
d

dx
f ~x!5 f ~x!2 f 2~x!12E

2`

x

dyey2x
d

dy
f 2~y!, ~32!

subject to the boundary conditionsf (2`)50 and f (`)
51. The exponential decay 12 f (x);exp(lx) as x→`
gives the dispersion relationv54(11l)212l21 and the
extremum selection principle yieldsl5v51. Close to the
shattering transition, the typical mass is proportional to
average mass,m* ;(12t) @35#. The mass densities behav
as in the deterministic case and the extremal behaviors~17!
are recovered witha52. The nature of the transition is dis
continuous, as in the deterministic case.

C. Model C

When the smaller particle splits upon collision, the ra
equations for the mass density are

]

]t
c~m!54E

m

` dm8

m8
c~m8!B~m8!22c~m8!B~m8!

~33!
02110
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with B(m,t)5*m
`dm8 c(m8,t). In terms of the indexn, the

cumulative densityB(n,t)5*0
ndn8c(n8) obeys Eq.~31!. The

normalized cumulative density again admits the travel
wave form. The velocity and decay rate arev59 and l
5 1

3 . At the shattering time, the~finite! mass distribution di-
verges algebraically:c(m,1);m2a with a510/9. Past the
shattering transition, the asymptotic ansatzc(m,t)
→m23/2u(t) holds for small masses and the dust mass
related to the order parameter via (d/dt) m52u2. We con-
clude that qualitatively, the shattering transition is similar
the deterministic case.

V. DISCUSSION

We investigated kinetic properties of collision-induce
fragmentation processes. Generally, the mass is transfe
from finite fragments into infinitesimal dust in a finite time
The nature of the shattering transition depends on the f
mentation process. When the larger of the colliding partic
splits or when a randomly selected one splits, the transitio
discontinuous and the entire mass is transformed into d
instantaneously. When the smaller particle splits, the tra
tion is continuous, with the dust accumulating gradually p
the shattering transition. In this case, finite fragments alw
carry a nonzero fraction of the mass.

Model A is essentially linear and thus solvable. For mo
elsB andC, the nonlinear and nonlocal governing equatio
cannot be solved in a closed form. Nevertheless, in the
cinity of the shattering transition, we were able to obtain t
most important characteristics analytically by utilizing th
traveling wave form of the fragment mass density. The m
distribution follows a scaling behavior with a single chara
teristic scale, in contrast with the two scales found for line
processes.

For modelC, the post-shattering behavior is nontrivial. A
the transition point, the mass distribution decays algeb
ically, c(m);m2a, with a transcendental exponenta
51.201 91 . . . in deterministic fragmentation and a ration
exponenta510/9 in stochastic fragmentation. We have al
demonstrated that the mass densities exhibit unive
asymptotic behavior~25! in the post-shattering region.

A challenging open problem is the complete po
shattering behavior in modelC, for example, the time-
dependent dust mass. This is largely a mathematical prob
since physically, the breakage of sufficiently small fragme
is impossible. For instance, microcracks on the surface of
fragment are often precursors for breakage. The numbe
such surface defects is proportional to the surface area
sufficiently small fragments are effectively unbreakable.

We focused on the leading asymptotic behavior. Th
are, however, corrections to the linear front propagation@24–
27#. The traveling wave solution is actually a function ofx
5n2X(t) with the position of the frontX(t) given by
X(t)5vt6(3/2l) lnt1O(1). The plus and minus signs co
respond to modelsB andC, respectively. This translates to
logarithmic correction to the typical mass~15!.

We treated the problem using a mean-field rate equa
approach. Thus we ignored correlations between the co
ing particles. In principle, spatial correlations may be imp
2-6
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tant up to some critical dimension beyond which they c
indeed be ignored. The analysis of this possibility require
more complete description of the process. Particularly,
must specify the transport mechanism.

Collision-induced fragmentation arises most naturally
processes where particles move ballistically between c
sions. Using dimensional analysis we argue that the sha
ing transition always occur in ballistic fragmentation. T
typical mean free timeT, velocity v, particle cross sections,
and number densityN are related viaNvTs;1. Mass con-
servation impliesm;N21 ~herem is the typical mass!, while
energy conservation givesv;1. Finally m;sd/(d21) yields
s;N2111/d. In particular, T;N21/d. The particle density
se

-

r

.

,

ro

02110
n
a
e

i-
r-

evolves according to (d/dt) N5N/T, or (d/dt) N;N111/d

from whichN;(tc2t)2d. Based on this heuristic argumen
we speculate that in ballistic fragmentation, the shatter
transition occurs in arbitrary dimensiond. Using effective
d-dimensional collision rates (}N1/d), one can convert the
‘‘one-dimensional’’ results in this study into a general mea
field theory.
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